
ECE 150 Fundamentals of ProgrammingECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Transform-reduce

2
Transform ReduceTransform Reduce

Outline

• In this lesson, we will:

– Define the transformation-reduction of an array

– Look at implementations of various reductions

– Introduce a transform-reduce function

– Look at the implementation and examples

3
Transform ReduceTransform Reduce

Introduction

• We have looked at reductions

– We will now look at other reductions that suggest we need more

4
Transform ReduceTransform Reduce

Introduction

• Suppose we want to find the maximum absolute value

– We would need a new accumulator:

void max_abs(double x, double y) {

x = std::abs(x);

y = std::abs(y);

if (x >= y) {

return x;

} else {

return y;

}

}

5
Transform ReduceTransform Reduce

Introduction

• Suppose we want to find the sum of the squares:

– We would need a new accumulator:

void sum_of_squares(double x, double y) {

return x + y*y;

}

– Issue: this accumulator is neither commutative nor associative

• The implementation is no longer parallelizable…

6
Transform ReduceTransform Reduce

Introduction

• Instead, we have

max_val = std::max(max_val, std::abs(array[k]));

array_sum = array_sum + array[k]*array[k];

• Instead, we use the commutative and associative functions,

but we need to provide a function that transforms the array entry

max_val = std::max(max_val, T(array[k]));

array_sum = array_sum + T(array[k]);

7
Transform ReduceTransform Reduce

Generalizing the range

• Thus, we have:
double transform_reduce(

double array[],

std::size_t begin,

std::size_t end,

double x0,

std::function<double(double, double)> accumulator,

std::function<double(double)> transform

) {

double result{ transform(x0) };

for (std::size_t k{begin}; k < end; ++k) {

result = accumulator(result, transform(array[k]));

}

return result;

}

8
Transform ReduceTransform Reduce

Example 1

• What does this code do?
int main() {

std::size_t N{ 10 };

double data{ 3.2, -5.4, 1.9, 8.6, 0.7, 6.5, 2.0, 7.1, -4.3, -9.8 };

std::cout << transform_reduce(data, 0, N,

-std::numeric_limits<double>::infinity(),

max, abs_val)

<< std::endl;

return 0;

}

double max(double x, double y) {

if (x >= y) {

return x;

} else {

return y;

}

}

double abs_val(double x) {

if (x >= 0) {

return x;

} else {

return –x;

}

}

9
Transform ReduceTransform Reduce

Example 2

• What does this code do?
int main() {

std::size_t N{ 10 };

double data{ 3.2, -5.4, 1.9, 8.6, 0.7, 6.5, 2.0, 7.1, -4.3, -9.8 };

std::cout << transform_reduce(data, 0, N, 0.0, sum, sqr)

<< std::endl;

return 0;

}

double sum(double x, double y) {

return x + y;

}

double sqr(double x) {

return x*x;

}

10
Transform ReduceTransform Reduce

The standard library

• In the standard library, there is a

std::transform_reduce(…)

in the header

#include <numeric>

– Remember, rather than passing an array pointer and indices,
you pass the addresses of array[begin] and array[end]

11
Transform ReduceTransform Reduce

Summary

• Following this lesson, you now:

– Understand what a transformation-reduction is

– Seen how to implement this function

– Looked at calculating the sum of squares of the entries of the array,

and the maximum entry in absolute value

– A fun game is to determine how many algorithms can

be implemented using a transform-reduce

12
Transform ReduceTransform Reduce

References

[1] https://en.cppreference.com/w/cpp/algorithm/transform_reduce

13
Transform ReduceTransform Reduce

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

14
Transform ReduceTransform Reduce

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

